Return Value Predictability Profiles for Self-healing

نویسندگان

  • Michael E. Locasto
  • Angelos Stavrou
  • Gabriela F. Cretu-Ciocarlie
  • Angelos D. Keromytis
  • Salvatore J. Stolfo
چکیده

Current embryonic attempts at software self–healing produce mechanisms that are often oblivious to the semantics of the code they supervise. We believe that, in order to help inform runtime repair strategies, such systems require a more detailed analysis of dynamic application behavior. We describe how to profile an application by analyzing all function calls (including library and system) made by a process. We create predictability profiles of the return values of those function calls. Self–healing mechanisms that rely on a transactional approach to repair (that is, rolling back execution to a known safe point in control flow or slicing off the current function sequence) can benefit from these return value predictability profiles. Profiles built for the applications we tested can predict behavior with 97% accuracy given a context window of 15 functions. We also present a survey of the distribution of actual return values for real software as well as a novel way of visualizing both the macro and micro structure of the return value distributions. Our system helps demonstrate the feasibility of combining binary–level behavior profiling with self–healing repairs. keywords: behavior profiling, anonamly detection, self-healing

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stock Return Predictability: Is it There?

We ask whether stock returns in France, Germany, Japan, the UK and the US are predictable by three instruments: the dividend yield, the earnings yield and the short rate. The predictability regression is suggested by a present value model with earnings growth, payout ratios and the short rate as state variables. We find the short rate to be the only robust short-run predictor of excess returns,...

متن کامل

International stock return predictability under model uncertainty

This paper examines return predictability when the investor is uncertain about the right state variables. A novel feature of the model averaging approach used in this paper is to account for finite-sample bias of the coefficients in the predictive regressions. Drawing on an extensive international dataset, we find that interest-rate related variables are usually among the most prominent predict...

متن کامل

Predictability of Returns and Cash Flows ∗ Ralph

We review the literature on return and cash flow growth predictability form the perspective of the present-value identity. We focus predominantly on recent work. Our emphasis is on U.S. aggregate stock return predictability, but we also discuss evidence from other asset classes and countries. JEL classification: G10, G12, G14, G35.

متن کامل

Investigating Predictability of Different "Forms of Return" in Tehran Stock Exchange: Some Rolling Regressions-based Evidence

This paper has provided "out of sample" evidence of stock returns predictability in Tehran Stock Exchange. 68 qualified companies over the period from 2002 to 2015 were selected and for five different "forms of returns", five superior predictive models have been designed by applying "General to specific" approach of modeling technique. Then "out of sample" analysis, based on rolling regressions...

متن کامل

On the Predictability of Stock Market Behavior using StockTwits Sentiment and Posting Volume

In this study, we explored data from StockTwits, a microblogging platform exclusively dedicated to the stock market. We produced several indicators and analyzed their value when predicting three market variables: returns, volatility and trading volume. For six major stocks, we measured posting volume and sentiment indicators. We advance on the previous studies on this subject by considering a l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008